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Recently developed single-root multireference Brillouin–Wigner coupled cluster (MR BWCC) theory
is applied to study the rotational barrier of the ethylene molecule. The method belongs to a broad
family of state-selective coupled-cluster (CC) methods and may be considered as a bridge connecting
the single-reference and multireference CC theories. In a highly nondegenerate case, it becomes
identical with the standard single-reference CC method while in a quasi-degenerate case gives results
very close to the Hilbert space MR CC method. The method switches between the two cases in a
continuous way, providing thus smooth potential energy surfaces, not plagued by intruder states. The
rotation about the double bond in ethylene represents a typical two-state problem. To demonstrate
abilities of our approach, we study the rotation barrier using the single-root MR BWCC theory at the
CCSD level of approximation and the results are compared with other CC methods.
Key words: State-selective; Multireference; Coupled cluster; Hilbert space; Brillouin–Wigner;
Single-root; Ab initio calculations; Quantum chemistry.

In the past two decades, the single-reference coupled-cluster (CC) method, based on the
exponential expansion of the wave function, has become one of the most efficient and
reliable methods to account for electron correlation in the close-shell nondegenerate
ground states of atoms and molecules1–8. Nevertheless, its extension to a multireference
(MR) case, that is necessary when handling quasi-degenerate or general open-shell sys-
tems, has proven far from being an easy or straightforward task. Among them, two
important classes can be distinguished: the Fock space9–15 and Hilbert space16–23 ap-
proaches.

The main reason why existing multireference coupled-cluster (MR CC) methods as
well as related multireference Rayleigh–Schrödinger many-body perturbation theory
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(MR MBPT) cannot be considered as standard or routine methods is the occurrence of in-
truder states or convergence problems. Needless to say, majority of existing MR CC/MBPT
methods are based on the so-called Bloch theory24, i.e. several states are treated simul-
taneously. However, such a treatment is not very suitable to explore global potential
energy surfaces (PES) since it is hardly possible to construct such a model space that
would be large enough to describe a manifold of states over the whole PES simulta-
neously. Moreover, in order to ensure size-extensivity, both theories prefer the com-
plete model space formulations what makes the situation even worse.

Therefore, it is highly desirable to develop alternative methods which would focus
on a single state while employing a multiconfigurational reference. These approaches
are often denoted as one-state or state-selective (SS) or state-specific or single-root
methods. From recent works, one should mention various MR CEPA (coupled electron
pair approximation) approaches25–32, the two-determinant Hilbert space MR CC approach
for open-shell singlet states22, SS MR CC method of Oliphant and Adamowicz33,34, SS
open-shell CC method based on the unitary group approach of Li and Paldus35,36 and SS
version of the Hilbert space MR CC method of Meller et al.37. In our recent articles38,39

we have formulated the so-called single-root multireference Brillouin–Wigner coupled-
cluster (MR BWCC) theory which deals with one state while employing a multicon-
figurational reference. The method represents a brand-new CC approach to
quasidegenerate problems which combines merits of two theories: the single-reference
CC method in a nondegenerate case and the Hilbert space MR CC method16 in quasi-
degenerate case. In this respect, more convenient name of the method should be the SS Hilbert
space MR CC approach. The method has several advantages over the Hilbert space
based MR CC approaches: (i) no coupling terms, (ii) equations for cluster amplitudes
do not mix various sets of amplitudes, (iii) no redundancy problem, (iv) the method can
be very easily implemented into existing CC codes, and (v) in a highly nondegenerate
case the method reduces to the standard single-reference CC method. On the other
hand, the method is not fully size-extensive due to the presence of disconnected terms.

So far, the single-root MR BWCC method has been successfully applied to several
small systems, such as the trapezoidal H4 model system38,39, dissociation of the F2
molecule40 and rotational barrier of the N2H2 molecule41 at the CCSD level of approxi-
mation (i.e. CC method truncated at the single and double excitation level) using a
two-determinant model space. The model space was spanned by two closed-shell type
configurations: the ground state configuration and biexcited configuration HOMO2 →
LUMO2 where HOMO is the highest occupied molecular orbital and LUMO is the
lowest unoccupied molecular orbital.

The main goal of this article is to study the rotational barrier of the ethylene mole-
cule and focuses on the performance of the MR BWCCSD method in comparison to
other ab initio approaches. The rotation of the C2H4 molecule around the double bond
represents a typical two-state problem in which the weights of reference configurations
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can change from 0 to 1 in a continuous way (for a twisted geometry we observe full
configurational degeneracy); however, in contrast to the diimine molecule, the relaxa-
tion effects play much more important role here.

THEORY

In this section we give a brief review of the single-root MR BWCC approach; more
details can be found in our articles38,39. To this end, let us assume that we are interested
in one state, say, for simplicity, the ground state ψ0 and our task is to solve the Schrod-
inger equation

HΨ0 = ε0Ψ0  . (1)

Let us further assume that we are able to split the exact Hamiltonian H into two parts

H = H0 + V  , (2)

where H0 is a zeroth-order Hamiltonian and V is a perturbation and we know the solu-
tion of the characteristic problem of H0

H0Φµ = EµΦµ  . (3)

If the most important contributions to the ground state are provided by d configurations
Φµ represented by Slater determinants (in a spin-orbital form), within the multireference
Brillouin–Wigner perturbation theory42 the exact wave function ψ0 can be expressed as
follows

Ψ0 = (1 + B0V + B0V B0V + …)Ψ0
P  , (4)

where B0 is the Brillouin–Wigner-like propagator

B0 = ∑ 
q∈Q

|Φq〉 〈Φq|

ε0 − Eq

(5)
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and Ψ0
P  is a projection of the exact wave function onto the model space. The model or

reference space P is spanned by d dominant configuration Φµ; its orthogonal comple-
ment is denoted as a Q space.

Now, one can introduce a state-specific wave operator Ω
~

, acting on states from the
model space, in the following way

Ω
~

 = 1 + B0V + B0V B0V + …  . (6)

The wave operator Ω
~

 obeys the operator equation

Ω
~

 = 1 + B0VΩ
~

(7)

that can be viewed as an analogue of the Bloch equation for the state-specific wave
operator. We recall that the wave operator Ω

~
 converts just one projected wave function

into the corresponding exact wave function and should not be confused with the so-
called Bloch wave operator that transforms several projected wave functions Ψα

P  into
corresponding exact states; therefore we prefer the use of a tilde. The “effective” hamil-
tonian H

~
eff is defined in the same way as in the Bloch theory, i.e.

H
~

eff = PHΩ
~

P (8)

which implies that the exact energy of the ground state ε0 is obtained as one of its
eigenvalues. Remaining eigenvalues do not represent any physical meaningful solution.

If we adopt an exponential expansion for the wave operator Ω
~

, we speak about the
single-root MR BWCC method. The simplest way is to exploit the Hilbert space ex-
ponential ansatz of Jeziorski and Monkhorst16

Ω
~

 = ∑eTµ

µ∈P

 |Φµ〉〈Φµ|  , (9)

where Tµ is a cluster operator defined with respect to the µ-th configuration. In this
sence, the method can be considered as a state-selective Hilbert space MR CC method,
however, in contrast to other SS MR CC approaches, there is no redundancy problem.
Substituting the exponential Ansatz (9) into Eq. (7) and projecting against the configu-
rations from the Q and P subspaces, we get a system of equations
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(ε0 − Hµµ)〈Φq |e
Tµ

| Φµ〉 = 〈Φq |HN (µ) eTµ
| Φµ〉 (10)

that can be used for the calculation of cluster amplitudes in the single-root MR BWCC
theory. The symbol HN(µ) denotes the normal-ordered Hamiltonian with respect to the
µ-th configuration

HN(µ) = H − 〈Φµ |H| Φµ〉 = H − Hµµ  . (11)

In contrast to approaches based on the Bloch theory, the system of equations (10) is
dependent on the exact energy of our interest and must be solved simultaneously with
the eigenvalue problem for the effective Hamiltonian.

If the confine ourselves to a complete model space formulation at the CCSD level of
approximation, the singly excited amplitudes are given by

(ε0 − H
~

µµ
eff) tIA(µ) = 〈ΦI

A(µ) |HN (µ) eTµ
| Φµ〉C  , (12)

where the subscript C denotes a connected part. In a special case of a two-determinant
model space, correpsonding to two active orbitals of different symmetry, the doubly
excited amplitudes are given by

(ε0 − H
~

µµ
eff) tIJAB(µ) = 〈ΦIJ

AB(µ) |HN (µ) eTµ
| Φµ〉C + (ε0 − H

~
µµ
eff)(tIA tJ

B − tJ
A tI

B)µ  . (13)

RESULTS AND DISCUSSION

In order to better judge performance of the single-root MR BWCC method, we study
the rotational barrier of the ethylene molecule at the CCSD level and the results are
compared with other single-reference and MR CCSD methods. The 6-31G** basis set43

has been used. As already spoken, the rotation around the double bond represents a
typical two-state problem in which the weights of reference configurations can change
from 0 to 1 in a continuous way. In order to obtain a qualitatively correct potential
energy curve, two closed-shell-type configurations have to be included in the reference
space: the ground state configuration and biexcited configuration HOMO2 → LUMO2.
Such a model space corresponds to the active orbital space spanned by two orbitals:
HOMO and LUMO. For a twisted conformation (dihedral angle about 90°) we observe
full configurational degeneracy.
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In constrast to our previous work on the N2H2 molecule, the relaxation effects in the
CH2=CH2 molecule are much more important, therefore the geometry of the molecule
was optimized at the CASSCF level (two electrons in two orbitals) for each point. For
dihedral angle 0° (i.e. equilibrium geometry) the reamining internal coordinates are: rCC =
2.528 bohr, rCH = 2.034 bohr and ΘHCC = 121.7° and for dihedral angle 90°: rCC = 2.776 bohr,
rCH = 2.033 bohr and ΘHCC = 121.3°. Molecular orbitals to be used in the MR
BWCCSD calculations are taken from the restricted Hartree–Fock (RHF) calculations
for the ground state. In view of a different spacial symmetry of active orbitals, the
model space is complete and one can take advantage of Eq. (13) for doubly excited
cluster amplitudes. We recall that the orbital HOMO-LUMO degeneracy is not ob-
served in this case, even though the orbital degeneracy alone is of less concern in the
CC approaches.

For the sake of comparison, we also carried out the Hilbert space MR CCSD and
MC-QDPT2 (multiconfigurational quasi-degenerate perturbation theory up to the second-
order of Nakano44) calculations within the same reference space as well as two single-
reference calculations: RHF based CCSD (RHF-CCSD) and unrestricted Hartree–Fock
based CCSD (UHF-CCSD) calculations. In the case of the Hilbert space MR CCSD
method, we employ the RHF molecular orbitals and full expansion of the so-called
coupling (renormalization) terms. In the case of the MC-QDPT2 calculations, the
CASSCF orbitals are used. Two 1s core orbitals were frozen throughout the calcula-
tions.

In Fig. 1, we present a total view of potential energy curves for the ground state and
first biexcited state. A detailed view of the ground state is shown in Fig. 2. As may be
expected, the RHF-CCSD method provides a reliable description of the ground state in
the nondegenerate region (i.e. for dihedral angles from 0° up to 70°) but completely
fails in the region where the ground state configuration is no more a dominant configu-
ration. Moreover, the convergence in that region is very slow.

The UHF-CCSD method remedies the failure of the RHF-CCSD approach in the
quasi-degenerate region and gives a correct shape of the potential energy barrier, but
the method is spin-contaminated. For dihedral angles less than 2° the UHF and RHF
solutions coincide. Somewhat erroneous curvature of the UHF-CCSD potential energy
curve in the region between 50 and 70° (it deviates more than its RHF counterpart) is
attributed mainly to the spin contamination; it is worth mentioning that a similar beha-
viour of the UHF-CCSD curve was also found in the case of the fluorine molecule at
geometries somewhat beyond the equilibrium distance45.

The Hilbert space MR CCSD method gives a correct shape of the potential energy
barrier almost over the whole range of dihedral angles, but fails in a highly nondegener-
ate region; i.e. in the region between 0 and 10°. Likewise, the convergence in this
region is extremely bad and the use of convergence accelerators (such as DIIS) is
necessary. As a by-product (besides the ground state) we also get the biexcited state
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that is depicted in Fig. 1. The Hilbert space MR CCSD potential energy curves show a
sharp jump at point 4.96°. In the case of the excited state it is directly visible in Fig. 1
while in the case of the ground state in Fig. 2 it has been magnified for a better distinc-
tion.

The existence of the jump is probably related to the existence of multiple solutions
of the MR CCSD equations, see refs19,23,46. As it is well known, the MR CCSD equa-
tions possess multiple solutions capable of describing not only the lowest states but also
other various manifolds of states as long as they contain a significant contribution from
the model space (depending on the starting approximation the Newton–Raphson iterative
procedure converges to different solutions). On the other hand, other reasons could be
the model space deficiency or occurrence of intruder states. Due to the curvature of the
excited state in the region between 0 and 5° there is a suspicion of another solution (the
curve seems to be a part of the higher excited state), but it is interesting that we were
not able to obtain both solutions in any small region simultaneously. Even though we
have used the method of an “analytic continuation” of solutions with a fine step of
0.01°, we were not able to follow a particular solution beyond the point 4.96°. A full
understanding of this problem would require more investigation and numerical experi-
ence. Nevertheless, such a failure of the Hilbert space MR CC method appears to be
typical and demonstrates why the Hilbert space MR CC methods are scarcely employed
to study global potential energy surfaces.

The single-root MR BWCCSD and QDPT2 methods provide us with smooth and
almost parallel potential energy barriers of a correct shape for all dihedral angles.
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FIG. 1
Potential energy curves for the ground and first
biexcited states of the ethylene molecule ob-
tained by various ab initio methods for the rota-
tion around the double bond. The 6-31G** basis
set used; geometry optimized using the
CASSCF (two electrons in two orbitals)
method. Methods: 1 MC-QDPT2, 2 RHF-
CCSD, 3 UHF-CCSD, 4 single-root MR
BWCCSD, 5 Hilbert space MR CCSD
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No intruder states were encountered. The potential energy barrier predicted by the MR
BWCCSD is about 2.966 eV and differs from the QDPT2 one only by 0.017 eV. In the
nondegenerate region, the single-root MR BWCCSD potential energy curve becomes
identical with the RHF-CCSD one (with a negligible difference being 0.004 eV at 0°),
while in the quasi-degenerate region approaches the Hilbert space MR CCSD curve.
The single-root MR BWCCSD and Hilbert space MR CCSD approximations do not
become identical even in the case of full configuration degeneracy since they work with
different wave operators. The size-extensivity error of the MR BWCC method can be
roughly assessed from the calculated potential barriers; the overall error is not worse
than that for the QDPT2 method (at least in this case, of course).

Finally, let us mention the excited state. For completeness, we also performed the
single-root MR BWCCSD calculations for the excited state (see Fig. 1) in the region
between 30 and 90°. For dihedral angles less than 30° the method did not seem to
converge or it converged to a higher state in the vicinity of 0°. It is remarkable, that the
deviations from the Hilbert space MR CCSD method in the quasi-degenerate region are
comparable to those observed for the ground state; so the single-root MR BWCC
method can also be successfully applied to excited states; even though, in general, we
are not able to exclude convergence difficulties in view of the Brillouin–Wigner-like
denominators εi – Eq. One can thus conclude that the single-root MR BWCC method
appears as a viable and promising approach for the calculation of the ground state
potential energy surfaces and should deserve future attention, in particular using more
reference configurations.
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FIG. 2
Closeup view of the rotational barrier for the
ethylene molecule obtained by the QDPT2 and
various coupled-cluster methods. The 6-31G**
basis set used; geometry optimized using the
CASSCF (two electrons in two orbitals)
method. Methods: 1 MC-QDPT2, 2 RHF-
CCSD, 3 UHF-CCSD, 4 single-root MR
BWCCSD, 5 Hilbert space MR CCSD
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