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Recently developed single-root multireference Brillouin—~Wigner coupled cluster (MR BWCC) th
is applied to study the rotational barrier of the ethylene molecule. The method belongs to a
family of state-selective coupled-cluster (CC) methods and may be considered as a bridge cor
the single-reference and multireference CC theories. In a highidagenerate case, it become
identical with the standard single-reference CC method while in a quasi-degenerate case gives
very close to the Hilbert space MR CC method. The method switches between the two cas
continuous way, providing thus smooth potential energy surfaces, not plagued by intruder stat
rotation about the double bond in ethylene represents a typical two-state problem. To demc
abilities of our approach, we study the rotation barrier using the single-root MR BWCC theory
CCSD level of approximation and the results are compared with other CC methods.

Key words: State-selective; Multireference; Coupled cluster; Hilbert space; Brillouin—Wigt
Single-root;Ab initio calculations; Quantum chemistry.

In the past two decades, the single-reference coupled-cluster (CC) method, basec
exponential expansion of the wave function, has become one of the most efficiel
reliable methods to account for electron correlation in the close-shell nhondege!
ground states of atoms and molectifgsNevertheless, its extension to a multireferer
(MR) case, that is necessary when handling quasi-degenerate or general open-st
tems, has proven far from being an easy or straightforward task. Among themn
important classes can be distinguished: the Fock $pdemd Hilbert spacdé—23ap-
proaches.

The main reason why existing multireference coupled-cluster (MR CC) metho
well as related multireference Rayleigh—Schrédinger many-body perturbation tt
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(MR MBPT) cannot be considered as standard or routine methods is the occurrence
truder states or convergence problems. Needless to say, majority of existing MR CC/
methods are based on the so-called Bloch tRédrg. several states are treated simt
taneously. However, such a treatment is not very suitable to explore global pot
energy surfaces (PES) since it is hardly possible to construct such a model spa
would be large enough to describe a manifold of states over the whole PES si
neously. Moreover, in order to ensure size-extensivity, both theories prefer the
plete model space formulations what makes the situation even worse.

Therefore, it is highly desirable to develop alternative methods which would f
on a single state while employing a multiconfigurational reference. These appro
are often denoted as one-state or state-selective (SS) or state-specific or sing
methods. From recent works, one should mention various MR CEPA (coupled el¢
pair approximation) approaclés® the two-determinant Hilbert space MR CC approz
for open-shell singlet stat¥s SS MR CC method of Oliphant and Adamowic?, SS
open-shell CC method based on the unitary group approach of Li and¥®atdnsl SS
version of the Hilbert space MR CC method of Me#eal®’. In our recent articlé&3°
we have formulated the so-called single-root multireference Brillouin—Wigner couj
cluster (MR BWCC) theory which deals with one state while employing a multic
figurational reference. The method represents a brand-new CC approa
quasidegenerate problems which combines merits of two theories: the single-refi
CC method in a nondegenerate case and the Hilbert space MR CC hettmdhsi-
degenerate case. In this respect, more convenient name of the method should be the S
space MR CC approach. The method has several advantages over the Hilber
based MR CC approaches: (i) no coupling terms, (ii) equations for cluster ampli
do not mix various sets of amplitudes, (iii) no redundancy problem, (iv) the metho
be very easily implemented into existing CC codes, and (v) in a highly nondeger
case the method reduces to the standard single-reference CC method. On th
hand, the method is not fully size-extensive due to the presence of disconnected

So far, the single-root MR BWCC method has been successfully applied to s
small systems, such as the trapezoidal H4 model syténdissociation of the F
moleculé® and rotational barrier of the N, moleculé!at the CCSD level of approxi-
mation (.e. CC method truncated at the single and double excitation level) usi
two-determinant model space. The model space was spanned by two closed-sh
configurations: the ground state configuration and biexcited configuration HOMC
LUMO? where HOMO is the highest occupied molecular orbital and LUMO is
lowest unoccupied molecular orbital.

The main goal of this article is to study the rotational barrier of the ethylene r
cule and focuses on the performance of the MR BWCCSD method in comparis
otherab initio approaches. The rotation of thgH; molecule around the double bon
represents a typical two-state problem in which the weights of reference configur:
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can change from 0 to 1 in a continuous way (for a twisted geometry we observ
configurational degeneracy); however, in contrast to the diimine molecule, the re
tion effects play much more important role here.

THEORY

In this section we give a brief review of the single-root MR BWCC approach; r
details can be found in our articté$® To this end, let us assume that we are intere:
in one state, say, for simplicity, the ground sth§@nd our task is to solve the Schro
inger equation

HW,= &€\, . @)
Let us further assume that we are able to split the exact HamiltBniato two parts
H=H,+V , @

whereH,is a zeroth-order Hamiltonian andis a perturbation and we know the sol
tion of the characteristic problem Hi,

Ho®, = E,®, . ©)

If the most important contributions to the ground state are providelktbgfigurations
®, represented by Slater determinants (in a spin-orbital form), within the multirefe
Brillouin—Wigner perturbation theof§the exact wave functiogy, can be expressed a
follows

Wo=(1+ByV+BVByV+..)¥E | o]
whereB,is the Brillouin—Wigner-like propagator
|P, D |

Bo=» (5)
qgQ EO - Eq
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andWf is a projection of the exact wave function onto the model space. The mo
reference space P is spanneddbgominant configuratiom,; its orthogonal comple-
ment is denoted as a Q space. N

Now, one can introduce a state-specific wave opeftacting on states from the
model space, in the following way

Q=1+BV+BgVB\V +... . ©)
The wave operat(fz obeys the operator equation
Q=1+By\VQ ©)

that can be viewed as an analogue of the Bloch equation for the state-specific
operator. We recall that the wave operdconverts just one projected wave functic
into the corresponding exact wave function and should not be confused with tf
called Bloch wave operator that transforms several projected wave fungtioriato
corresponding exact states; therefore we prefer the use of a tilde. The “effective” |
tonianH. is defined in the same way as in the Bloch thebey

H.¢ = PHQP ®)

which implies that the exact energy of the ground sEgtés obtained as one of it:
eigenvalues. Remaining eigenvalues do not represent any physical meaningful sc

If we adopt an exponential expansion for the wave opefatave speak about the
single-root MR BWCC method. The simplest way is to exploit the Hilbert space
ponential ansatz of Jeziorski and Monkhbtst

Q=3Ye" o, €)
porP

where TH is a cluster operator defined with respect to |t configuration. In this
sence, the method can be considered as a state-selective Hilbert space MR CC |
however, in contrast to other SS MR CC approaches, there is nho redundancy pr
Substituting the exponential Ansa®) {nto Eq. {) and projecting against the configt
rations from the Q and P subspaces, we get a system of equations
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(€0 Hy ), €] ® 0= [, [Hy () €7 &0 (10)

that can be used for the calculation of cluster amplitudes in the single-root MR B
theory. The symboH\(p1) denotes the normal-ordered Hamiltonian with respect to
p-th configuration

H(W) =H = @, H ®,C=H - H,, a1

In contrast to approaches based on the Bloch theory, the system of equiidas
dependent on the exact energy of our interest and must be solved simultaneous
the eigenvalue problem for the effective Hamiltonian.

If the confine ourselves to a complete model space formulation at the CCSD le!
approximation, the singly excited amplitudes are given by

(€0~ HEh (1) = (W) Hy (W) €| 3 12

where the subscript C denotes a connected part. In a special case of a two-dete
model space, correpsonding to two active orbitals of different symmetry, the dt
excited amplitudes are given by

(€0 — HEM tAB(L) = TAR() Hy (1) €] D3 + (€ - HEMEA B -t41D), . (13

RESULTS AND DISCUSSION

In order to better judge performance of the single-root MR BWCC method, we ¢
the rotational barrier of the ethylene molecule at the CCSD level and the resul
compared with other single-reference and MR CCSD methods. The 6-31G** b43is
has been used. As already spoken, the rotation around the double bond repre
typical two-state problem in which the weights of reference configurations can ct
from 0 to 1 in a continuous way. In order to obtain a qualitatively correct pote
energy curve, two closed-shell-type configurations have to be included in the refe
space: the ground state configuration and biexcited configuration HOMOUMO?.
Such a model space corresponds to the active orbital space spanned by two c
HOMO and LUMO. For a twisted conformation (dihedral angle abott @@ observe
full configurational degeneracy.
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In constrast to our previous work on theHN molecule, the relaxation effects in th
CH,=CH, molecule are much more important, therefore the geometry of the mols
was optimized at the CASSCF level (two electrons in two orbitals) for each point
dihedral angle 0(i.e. equilibrium geometry) the reamining internal coordinates rage=
2.528 bohrrqy = 2.034 bohr an®-= 121.7 and for dihedral angle 90r.-= 2.776 bohr,
fey = 2.033 bohr andd,cc = 121.3. Molecular orbitals to be used in the M
BWCCSD calculations are taken from the restricted Hartree—Fock (RHF) calcule
for the ground state. In view of a different spacial symmetry of active orbitals,
model space is complete and one can take advantage ofl®dof doubly excited
cluster amplitudes. We recall that the orbital HOMO-LUMO degeneracy is not
served in this case, even though the orbital degeneracy alone is of less concerr
CC approaches.

For the sake of comparison, we also carried out the Hilbert space MR CCSI
MC-QDPT2 (multiconfigurational quasi-degenerate perturbation theory up to the se
order of Nakantf) calculations within the same reference space as well as two si
reference calculations: RHF based CCSD (RHF-CCSD) and unrestricted Hartree
based CCSD (UHF-CCSD) calculations. In the case of the Hilbert space MR C
method, we employ the RHF molecular orbitals and full expansion of the so-c
coupling (renormalization) terms. In the case of the MC-QDPT2 calculations.
CASSCEF orbitals are used. Two 1s core orbitals were frozen throughout the ce
tions.

In Fig. 1, we present a total view of potential energy curves for the ground stat
first biexcited state. A detailed view of the ground state is shown in Fig. 2. As mq
expected, the RHF-CCSD method provides a reliable description of the ground s
the nondegenerate regione( for dihedral angles from°0up to 70) but completely
fails in the region where the ground state configuration is no more a dominant col
ration. Moreover, the convergence in that region is very slow.

The UHF-CCSD method remedies the failure of the RHF-CCSD approach i
quasi-degenerate region and gives a correct shape of the potential energy barr
the method is spin-contaminated. For dihedral angles less thdre 2ZJHF and RHF
solutions coincide. Somewhat erroneous curvature of the UHF-CCSD potential e
curve in the region between 50 and {@@ deviates more than its RHF counterpart)
attributed mainly to the spin contamination; it is worth mentioning that a similar b
viour of the UHF-CCSD curve was also found in the case of the fluorine molect
geometries somewhat beyond the equilibrium disténce

The Hilbert space MR CCSD method gives a correct shape of the potential e
barrier almost over the whole range of dihedral angles, but fails in a highly nondec
ate region;i.e. in the region between 0 and °10ikewise, the convergence in thi
region is extremely bad and the use of convergence accelerators (such as D
necessary. As a by-product (besides the ground state) we also get the biexcite

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



Single-Root Multireference Brillouin-Wigner CC Theory 1219

that is depicted in Fig. 1. The Hilbert space MR CCSD potential energy curves sl
sharp jump at point 4.961n the case of the excited state it is directly visible in Fig
while in the case of the ground state in Fig. 2 it has been magnified for a better d
tion.

The existence of the jump is probably related to the existence of multiple solt
of the MR CCSD equations, see fé8f&4% As it is well known, the MR CCSD equa
tions possess multiple solutions capable of describing not only the lowest states b
other various manifolds of states as long as they contain a significant contribution
the model space (depending on the starting approximation the Newton—Raphson it
procedure converges to different solutions). On the other hand, other reasons cc
the model space deficiency or occurrence of intruder states. Due to the curvature
excited state in the region between 0 ahth®&re is a suspicion of another solution (t
curve seems to be a part of the higher excited state), but it is interesting that wi
not able to obtain both solutions in any small region simultaneously. Even thoug
have used the method of an “analytic continuation” of solutions with a fine ste
0.01°, we were not able to follow a particular solution beyond the point’ 486ull
understanding of this problem would require more investigation and numerical e
ence. Nevertheless, such a failure of the Hilbert space MR CC method appears
typical and demonstrates why the Hilbert space MR CC methods are scarcely em|
to study global potential energy surfaces.

The single-root MR BWCCSD and QDPT2 methods provide us with smooth
almost parallel potential energy barriers of a correct shape for all dihedral ar

—77.85

E, a.u.

—77.95

—78.05

Fie. 1 —78.15
Potential energy curves for the ground and first
biexcited states of the ethylene molecule ob-
tained by variousb initio methods for the rota-
tion around the double bond. The 6-31G** bas?s.25
set used; geometry optimized using the
CASSCF (two electrons in two orbitals)
method. Methods:1 MC-QDPT2, 2 RHF-
CCSD, 3 UHF-CCSD, 4 single-root MR—78.3S : ‘ . . ‘ . .

BWCCSD, 5 Hilbert space MR CCSD B .
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No intruder states were encountered. The potential energy barrier predicted by tl
BWCCSD is about 2.966 eV and differs from the QDPT2 one only by 0.017 eV. |
nondegenerate region, the single-root MR BWCCSD potential energy curve bec
identical with the RHF-CCSD one (with a negligible difference being 0.004 eV),at
while in the quasi-degenerate region approaches the Hilbert space MR CCSD
The single-root MR BWCCSD and Hilbert space MR CCSD approximations do
become identical even in the case of full configuration degeneracy since they worl
different wave operators. The size-extensivity error of the MR BWCC method ceé
roughly assessed from the calculated potential barriers; the overall error is not
than that for the QDPT2 method (at least in this case, of course).

Finally, let us mention the excited state. For completeness, we also performe
single-root MR BWCCSD calculations for the excited state (see Fig. 1) in the re
between 30 and 90 For dihedral angles less than°3Be method did not seem t
converge or it converged to a higher state in the vicinity’oft@s remarkable, that the
deviations from the Hilbert space MR CCSD method in the quasi-degenerate regi
comparable to those observed for the ground state; so the single-root MR B
method can also be successfully applied to excited states; even though, in gene
are not able to exclude convergence difficulties in view of the Brillouin—Wigner-
denominatorsE; — E;. One can thus conclude that the single-root MR BWCC met
appears as a viable and promising approach for the calculation of the grounc
potential energy surfaces and should deserve future attention, in particular using
reference configurations.
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—78.24

—78.26

—78.28

-78.30 Fc. 2

Closeup view of the rotational barrier for th
ethylene molecule obtained by the QDPT2 a
various coupled-cluster methods. The 6-31G
basis set used; geometry optimized using t
CASSCF (two electrons in two orbitals
method. Methods:1 MC-QDPT2, 2 RHF-

CCSD, 3 UHF-CCsSD, 4 single-root MR
O A el angle - BWCCSD, 5 Hilbert space MR CCSD
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